The post-translational modification, SUMOylation, and cancer (Review)
نویسندگان
چکیده
SUMOylation is a reversible post-translational modification which has emerged as a crucial molecular regulatory mechanism, involved in the regulation of DNA damage repair, immune responses, carcinogenesis, cell cycle progression and apoptosis. Four SUMO isoforms have been identified, which are SUMO1, SUMO2/3 and SUMO4. The small ubiquitin-like modifier (SUMO) pathway is conserved in all eukaryotes and plays pivotal roles in the regulation of gene expression, cellular signaling and the maintenance of genomic integrity. The SUMO catalytic cycle includes maturation, activation, conjugation, ligation and de-modification. The dysregulation of the SUMO system is associated with a number of diseases, particularly cancer. SUMOylation is widely involved in carcinogenesis, DNA damage response, cancer cell proliferation, metastasis and apoptosis. SUMO can be used as a potential therapeutic target for cancer. In this review, we briefly outline the basic concepts of the SUMO system and summarize the involvement of SUMO proteins in cancer cells in order to better understand the role of SUMO in human disease.
منابع مشابه
Mapping the SUMOylated landscape
SUMOylation is a post-translational modification that regulates a multitude of cellular processes, including replication, cell-cycle progression, protein transport and the DNA damage response. Similar to ubiquitin, SUMO (small ubiquitin-like modifier) is covalently attached to target proteins in a reversible process via an enzymatic cascade. SUMOylation is essential for nearly all eukaryotic or...
متن کاملNegative Regulation of C/EBPbeta1 by Sumoylation in Breast Cancer Cells
Sumoylation is a post-translational modification that is oftentimes deregulated in diseases such as cancer. Transcription factors are frequent targets of sumoylation and modification by SUMO can affect subcellular localization, transcriptional activity, and stability of the target protein. C/EBPbeta1 is one such transcription factor that is modified by SUMO-2/3. Non-sumoylated C/EBPbeta1, p52-C...
متن کاملSUMOylation and cell signalling.
SUMOylation is a highly transient post-translational protein modification. Attachment of SUMO to target proteins occurs via a number of specific activating and ligating enzymes that form the SUMO-substrate complex, and other SUMO-specific proteases that cleave the covalent bond, thus leaving both SUMO and target protein free for the next round of modification. SUMO modification has major effect...
متن کاملPost-translational modification by SUMO.
Post-translational modifications (PTMs) are chemical alterations to a protein following translation, regulating stability and function. Reversible phosphorylation is an example of an important and well studied PTM involved in a number of cellular processes. SUMOylation is another PTM known to modify a large number of proteins and plays a role in various cellular processes including: cell cycle ...
متن کاملIt takes two to tango: Ubiquitin and SUMO in the DNA damage response
The complexity of living cells is primarily determined by the genetic information encoded in DNA and gets fully disclosed upon translation. A major determinant of complexity is the reversible post-translational modification (PTM) of proteins, which generates variants displaying distinct biological properties such as subcellular localization, enzymatic activity and the ability to assemble in com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 52 شماره
صفحات -
تاریخ انتشار 2018